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Abstract

In this paper, we show that generative clas-
sifiers are capable of learning non-linear
decision boundaries and that non-linear
generative models can outperform a num-
ber of linear classifiers on some text cate-
gorization tasks.

We first prove that 3-layer multinomial
hierarchical generative (Bayesian) classi-
fiers, under a particular independence as-
sumption, can only learn the same lin-
ear decision boundaries as a multinomial
naive Bayes classifier.

We then go on to show that making a dif-
ferent independence assumption results in
nonlinearization, thereby enabling us to
learn non-linear decision boundaries.

We finally evaluate the performance of
these non-linear classifiers on a series of
text classification tasks.

1 Introduction

Probabilistic classifiers predict a class c given a
set of features F of the data point being classified,
by selecting the most probable class given the fea-
tures, as shown in Equation 1.

arg max
c

P (c|F ) (1)

Bayesian classifiers, also known as generative
classifiers, are those that learn a model of the joint
probability P (F, c) of the inputs F and labels c ∈
C (Ng and Jordan, 2001), and use the Bayes rule
(2) to invert probabilities of the features F given
a class c into a prediction of the class c given the
features F .

P (c|F ) =
P (F |c)× P (c)

P (F )
(2)

2-layer classifiers such as the perceptron and the
naive Bayes classifier are only capable of learning
linear decision boundaries (Minsky and Papert,
1988) passing through the origin (if learning a
multinomial probability distribution), or quadratic
decision boundaries (with a Gaussian probability
distribution or kernel).

The multilayer perceptron, a 3-layer classifier
with an input layer, a hidden layer and an output
layer, is capable of learning non-linear decision
boundaries (Cybenko, 1989; Andoni et al, 2014).
It is therefore only to be expected that 3-layer gen-
erative models should also be capable of learning
the same. However, it turns that under certain
conditions, 3-layer generative models for classi-
fication are only as powerful as 2-layer models,
and under other conditions, are capable of learn-
ing non-linear decision boundaries.

In this paper, we study 3-layer hierarchical
multinomial generative models, and define the
conditions under which their decision boundaries
are linear or non-linear. The main contributions of
the paper are the following:

• We prove that a certain set of independence
assumptions results in linear decision bound-
aries and identical classification performance
to a naive Bayes classifier.

• We demonstrate that a different set of in-
dependence assumptions makes models with
the same parameters capable of learning non-
linear decision boundaries and certain non-
linear functions, for instance, a scaled and
shifted XOR function.

• We show through experiments that such non-
linear hierarchical Bayesian models can
outperform many commonly used machine
learning models at certain text classification
tasks.



2 Related Work

Deep learning is a term used to describe any
method of machine learning involving the use of
multiple processing layers to learn representations
of data (LeCun et al., 2015; Bengio, 2009).

2.1 Neural Network Models

Two machine learning algorithms used in deep
learning are the multilayer perceptron (Rumelhart
et al, 1986) and the autoencoder (Alex et al, 2011),
both of which are neural networks (Wang and Ye-
ung, 2016).

2.2 Probabilistic Graphical Models

Probabilistic graphical models are concise graph-
based representations of probability distributions
over possibly complex and high-dimensional
spaces, with the nodes representing variables
of interest and various properties of the graph
representing functions interpretable as probabili-
ties (Koller and Friedman, 2009). Probabilistic
graphical models are usually of one of two types,
depending on whether their edges are directed or
undirected.

Undirected probabilistic graphical models (also
known as Markov random fields) have undirected
edges and are models of probability distributions
whose factorization is a function of the cliques in
the graph (Wainwright and Jordan, 2008). They
represent discriminative classifiers, which learn
the probability of the labels given the features
P (c|F ) directly (Ng and Jordan, 2001) without
first learning P (F |c) and then applying Bayesian
inversion. Two machine learning models used
in deep learning - Boltzmann machines (Ack-
ley et al, 1986) and restricted Boltzmann ma-
chines (Smolensky, 1986) - are both undirected
probabilistic graphical models (Fischer and Igel,
2012).

Directed probabilistic graphical models (also
known as Bayesian networks) are on the other
hand directed acyclic graphs where the factoriza-
tion of the probability distribution is a function of
the parent-child relationships in the graph.

2.3 Directed Probabilistic Graphical Models

For each vertex i ∈ 1 . . . n in a directed proba-
bilistic graphical model and the set of ancestor ver-
tices a(i) of i (vertices with a sequence of directed
edges leading to i), the random variables x1, x2
. . .xn attached to the nodes represent a family of

probabilistic distributions that factorise according
to Equation 3.

P (x1, x2 . . . xn) =

 ∏
1≤i≤n

P (xi|xa(i))

 (3)

In this paper, we focus on a subset of directed
probabilistic graphical models known as hierar-
chical Bayesian models (Wainwright and Jordan,
2008).

2.4 Hierarchical Bayesian Models
Hierarchical Bayesian models are directed prob-
abilistic graphical models in which the directed
acyclic graph is a tree (each node that is not the
root node has only one immediate parent). In these
models the ancestors a(i) of any node i do not con-
tain any siblings (every pair of ancestors is also
in an ancestor-descendent relationship). The fac-
torization represented by a hierarchical Bayesian
model is just a special case of Equation 3 (Wain-
wright and Jordan, 2008). Such models naturally
lend themselves to classification tasks because the
root node can be used to represent the set of classes
C and the leaf nodes the set of features F .

The naive Bayes classifier is a special case of a
hierarchical Bayesian classifier because it consists
of a tree that is only two layers deep (a root node
and a layer of leaf nodes). So, for the naive Bayes
classifier, Equation 3 reduces to Equation 4.

P (F, c) = P (F |c)P (c) =
∏
f∈F

P (f |c)P (c) (4)

Naive Bayes classifiers are easy to train because
all the nodes in the directed graph representation
of a naive Bayes classifier are visible nodes. Since
all the edge probabilities that need to be estimated
in the learning step are between visible variables,
they are easy to estimate.

With hierarchical Bayesian models, there are
also “hidden” nodes which do not correspond to
either labels or features in the data used in train-
ing. The estimation of the probabilities involv-
ing such hidden nodes requires the use of a train-
ing method such as Gibbs’ sampling, variational
method or expectation maximization (which is de-
scribed below).

Though hierarchical support vector machine
models (Sun and Lim, 2001) and hierarchical neu-
ral networks (Ruiz and Srinivasan, 2002) have



been explored in hierarchical text categoriza-
tion tasks, there has been relatively little work
on hierarchical generative models. There have
been evaluations of the performance of hierarchi-
cal generative models on hierarchical classifica-
tion tasks (Veeramachaneni et al., 2005), on im-
ages (Liao and Carneiro, 2015) and also on text
classification tasks (Vaithyanathan et al., 2000).
But none of the earlier papers attempt formal char-
acterization of the linear and non-linear aspects of
hierarchical generative models. So, to our knowl-
edge, there has been no earlier study establish-
ing the conditions for linearity and non-linearity
in such models along with a demonstration of su-
perior performance in a typical text categorization
task.

2.5 Expectation Maximization

The expectation maximization (EM) algorithm is
an iterative algorithm for estimating the param-
eters of a directed graphical model with hidden
variables. It consists of two steps: expectation (E-
step) and maximization (M-step) (Dempster et al.,
1977).

The parameters of the directed graphical model
are at first randomly initialized. In the E-step, ex-
pected counts of features are calculated at each
hidden variable using the current estimate of the
parameters conditional on the observations. These
expected counts are then used to re-estimate the
parameters, which is the M-step. The E-step
and M-step are iteratively computed until conver-
gence (Do and Batzoglou, 2008).

Let X be the observations and Z be the under-
lying hidden variables. EM tries to solve for the
parameters θ that maximize the log likelihood of
the observed data.

log P (X|θ) = log
∑
z

P (X,Z|θ) (5)

In the E-step, the algorithm finds a function
that lower bounds logP (X|θ) (Jordan and Bishop,
2004).

E-Step:

Q(θ|θ(t)) = EP (Z|X,θ(t))[log P (X,Z|θ)] (6)

The M-step calculates the new parameters from
the maximized Q function in Equation 6.

M-Step:

θ(t+1) = argmaxθ Q(θ|θ(t)) (7)

2.6 Repeated Expectation Maximization
Since the objective function optimized by the ex-
pectation maximization algorithm is non-convex,
expectation maximization can lead to suboptimal
learning on account of local maxima. The accu-
racy of any resultant model consequently varies
widely. Since the final state reached depends on
the initial set of parameters used (Laird et al,
1987), repeating expectation maximization with
different initial parameters (selected at random)
and selecting the best performing models (using
a validation set) yields better overall accuracy and
lowers the variance of the same (Zhao et al., 2011).

3 Three-Layer Models

In a 3-layer model, the root node represents the
set of class labels C = {c1, c2 . . . ck} and the
leaf nodes represent the set of features F =
{f1, f2 . . . fi}. And sandwiched between the two
is a set of hidden nodes H = {h1, h2 . . . hj}.
P (F |c) can be obtained from P (F,H|c) by

marginalizing over the hidden nodes, as follows.

P (F |c) =
∑
h

P (F, h|c) (8)

The chain rule gives us the following equation.

P (F, h|c) = P (F |h, c)× P (h|c) (9)

Substituting Equation 9 in Equation 8, we get
Equation 10.

P (F |c) =
∑
h

P (F |h, c)P (h|c) (10)

The corresponding rule for individual features1

can be similarly derived.

P (f |c) =
∑
h

P (f |h, c)P (h|c) (11)

By substituting Equation 10 in Equation 2, we
arrive at Equation 12.

P (c|F ) =
∑
h

P (F |h, c)P (h|c) P (c)

P (F )
(12)

So the parameters that need to be learnt for clas-
sification are P (F |h, c), P (h|c) and P (c). P (F )

1In the rest of the paper, we use capital letters to denote
sets of variables (features, hidden nodes and classes), and
lowercase letters for a specific variable (a feature, a hidden
node or a class).



does not need to be learnt as it is independent of
the class c and so is merely a normalization con-
stant.

Once these parameters have been learnt, the
probability of a class c given the features F can
be computed in one of two ways:

1. Product of sums.

2. Sum of products.

We prove below that using the product of sums
to compute P (c|F ) in a directed 3-layer multi-
nomial hierarchical model trained using expecta-
tion maximization yields a linear decision bound-
ary whereas using the sum of products results in a
non-linear decision boundary.

3.1 Product of Sums

If you assume that each feature f is independent
of every other feature conditional on a class c, then
the joint probability of a set of features F given a
class c can be written as a product of probabilities
of individual features given the class.

P (F |c) =
∏
f

P (f |c) (13)

Substituting Equation 11 into Equation 13, we
get Equation 14.

P (F |c) =
∏
f

∑
h

P (f |h, c)P (h|c) (14)

Substituting the above for P (F |c) in Equa-
tion 2, we get

P (c|F ) =
∏
f

(∑
h

P (f |h, c)P (h|c)

)
P (c)

P (F )

(15)

3.2 Proof of Naive Bayes Equivalence

In this subsection, we show that expectation maxi-
mization over any data-set results in the learning
of multinomial parameters that when combined
using Equation 15 yield a classifier with the same
classification performance as a multinomial naive
Bayes classifier trained on the same data-set.

The equation for P (c|F ) for a naive Bayes clas-
sifier can be obtained by dividing both sides by
P (F ) in Equation 4.

P (c|F ) = P (F |c) P (c)

P (F )
(16)

By inspection of Equation 16 and Equation 15,
we see that the right hand sides of these equations
must be equal for both classifiers (the 3-layer hi-
erarchical Bayesian and naive Bayes classifiers) to
perform identically.

By equating the right sides of Equation 16 and
Equation 15, we obtain Equation 172.

Pnb(F |c) =
∏
f

(∑
h

Phb(f |h, c)Phb(h|c)

)
(17)

By substituting Equation 13 in Equation 17 we
get Equation 18.

∏
f

Pnb(f |c) =
∏
f

(∑
h

Phb(f |h, c)Phb(h|c)

)
(18)

Equation 18 is satisfied if each of the factors on
the right hand side is equal to each of the corre-
sponding factors on the left hand side, as shown in
Equation 19.

Pnb(f |c) =
∑
h

Phb(f |h, c)Phb(h|c) (19)

So, to prove that the multinomial “product of
sums” hierarchical Bayes classifier is equivalent to
the multinomial naive Bayes classifier (and there-
fore is only capable of learning a linear hyperplane
separator between classes), all we have to estab-
lish is that Equation 19 holds for a given learning
procedure.

Let the count of a feature f in a class c be
C(f), and let the distribution learnt be a multi-
nomial distribution. For any class c and features
φ ∈ F , the class-conditional feature probabil-
ity learnt by a naive Bayes classifier is that given
by the maximum likelihood estimator as shown in
Equation 20.

Pnb(f |c) =
C(f)∑
φ∈F C(φ)

(20)

2The subscripts in Pnb and Phb indicate that these were
probabilities estimated for the naive Bayes and the hierarchi-
cal Bayesian classifiers respectively.



For the hierarchical Bayesian classifier, the ex-
pectation maximization algorithm learns Phb dif-
ferently depending on whether hard expectation
maximization or soft expectation maximization is
used.

3.2.1 Hard Expectation Maximization
In hard expectation maximization, each data point
is assigned to one of the hidden nodes h ∈ H in
the E-step. Let Ch(f) of a feature f ∈ F denote
the count of the feature in the data points assigned
to a hidden node h of a class c, and the set Fh
denote the set of features assigned to that hidden
node.

For any feature f , C(f) and Ch(f) are related
as follows.

C(f) =
∑
h∈H

Ch(f) (21)

It is now possible to write Phb in terms of C(f)
as shown in Equation 22 and Equation 23.

Phb(h|c) =

∑
θ∈Fh

Ch(θ)∑
φ∈F C(φ)

(22)

Phb(f |h, c) =
Ch(f)∑
θ∈Fh

Ch(θ)
(23)

By plugging Equation 22 and Equation 23 into
the right hand side of Equation 19 we get

∑
h

Phb(f |h, c)Phb(h|c) =
∑
h

Ch(f)∑
φ∈F C(φ)

(24)
Since the sum of counts Ch(f) over hidden

nodes h ∈ H is equal to C(f) (Equation 21), the
above equation is equal to

∑
h

Phb(f |h, c)Phb(h|c) =
C(f)∑
φ∈F C(φ)

(25)

Since the right hand sides of Equation 20 and
Equation 25 are equal, we have proved that Equa-
tion 19 holds when the probabilities Pnb and Phb
are learnt using hard expectation maximization.

3.2.2 Soft Expectation Maximization
In soft expectation maximization, each data point
is shared by all of the hidden nodes h ∈ H of a
class c in the E-step, with each hidden node’s share
of ownership being mh(d). Since mh(d) repre-
sents a probability distribution over h, (mh(d) =

P (h|d,Θ) where Θ are the parameters of the
model), the sum of mh(d) over all hidden nodes
is 1. ∑

h∈H
mh(d) = 1 (26)

Let Cd(f) of a feature f ∈ Fd denote the count
of the feature f in data point d belonging to a class
c, where Fd is the set of features in data point d.

Now the probabilities Phb can be computed as
follows.

Phb(h|c) =

∑
d

(
mh(d)

∑
θ∈Fd

Cd(θ)
)

∑
φ∈F C(φ)

(27)

Phb(f |h, c) =

∑
d
mh(d)Cd(f)∑

d

(
mh(d)

∑
θ∈Fd

Cd(θ)
) (28)

By plugging Equation 27 and Equation 28 into
the right hand side of Equation 19 we get

∑
h

Phb(f |h, c)Phb(h|c) =
∑
h

∑
d
mh(d)Cd(f)∑
φ∈F C(φ)

(29)
Taking the summation over h inside the summa-

tion over d we obtain Equation 30.

∑
h

Phb(f |h, c)Phb(h|c) =

∑
d

∑
h
mh(d)Cd(f)∑

φ∈F C(φ)

(30)
Since

∑
h
mh(d) = 1 (26), the above equation

reduces to Equation 31.

∑
h

Phb(f |h, c)Phb(h|c) =

∑
d
Cd(f)∑

φ∈F C(φ)
(31)

However,
∑

d
Cd(f) = C(f), so we obtain

∑
h

Phb(f |h, c)Phb(h|c) =
C(f)∑
φ∈F C(φ)

(32)

Since the right hand sides of Equation 20 and
Equation 32 are equal, we have proved that Equa-
tion 19 holds when the probabilities Pnb and Phb
are learnt using soft expectation maximization.

Thus we have proved that a hierarchical Bayes
classifier that computes P (c|F ) by taking the
product of the sums of Phb(f |h, c) × Phb(h|c) is
equivalent to a naive Bayes classier and is there-
fore, like a naive Bayes classifier, only capable of
learning a linear decision boundary.



3.3 Sum of Products
If you assume that each feature f is independent
of other features conditional on any hidden node h
belonging to any class c of the set C, then the joint
probability of a set of features F given a hidden
node h and its class c, denoted as P (F |h, c), can
be written as a product of probabilities of individ-
ual features given the hidden node and class.

P (F |h, c) =
∏
f

P (f |h, c) (33)

Substituting Equation 33 for P (F |h,C) in
Equation 12, we get Equation 34.

P (c|F ) =
∑
h

∏
f

P (f |h, c)

P (h|c) P (c)

P (F )

(34)
Equation 34 allows you to compute the poste-

rior probability P (c|F ) by taking the sum over the
hidden nodes of the products of P (f |h, c).

We show below that this method of computing
the posterior probability allows a multinomial hi-
erarchical Bayesian classifier to learn a non-linear
decision boundary.

3.4 Demonstration of Non-Linearity
When the XOR function is scaled by 4 and shifted
by 1 unit along the x and y axes, the resultant
function maps the tuples (x = 5, y = 5) and
(x = 1, y = 1) to 0 and the tuples (x = 5, y = 1)
and (x = 1, y = 5) to 1 as shown in Figure 1.

We can verify by observation that the convex
hulls around the data points in each of the cate-
gories intersect. The convex hull around category
1 is the line between {5, 1} and {1, 5}. The convex
hull around category 0 is the line between {1, 1}
and {5, 5}. These lines intersect at {3, 3}, and
therefore the categories are not linearly separable.

Since the categories are not linearly separable,
if a classifier is capable of learning (correctly clas-
sifying the points of) this XOR function it must be
a non-linear classifier.

In this subsection, we demonstrate experi-
mentally that a 3-layer multinomial hierarchical
Bayesian classifier with a “sum-of-products” pos-
terior and 4 hidden nodes (2 per class) can learn
this function.

Figure 2 shows the outputs of various classifiers
trained on the XOR function described in Figure 1
when run on random points in the domain of the

-
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Figure 1: A 2-D plot of the shifted and scaled
XOR function, where the filled circles stand for
points that map to 1 and the unfilled circles for
points that map to 0.

function. The small dots were placed at all points
classified as 1.

3.4.1 Naive Bayes
It can be seen from Figure 2a that the boundary
learnt by the naive Bayes classifier is a straight line
through the origin.

It can be seen that no matter what the angle of
the line is, at least one point of the four will be
misclassified.

In this instance, it is the point at {5, 1} that is
misclassified as 0 (since the clear area represents
the class 0).

3.4.2 Multinomial Non-Linear Hierarchical
Bayes

The decision boundary learnt by a multinomial
non-linear hierarchical Bayes classifier (one that
computes the posterior using a sum of products of
the hidden-node conditional feature probabilities)
is shown in Figure 2b.

The boundary consists of two straight lines
passing through the origin. They are angled in
such a way that they separate the data points into
the two required categories.

All four points are classified correctly since the
points at {1, 1} and {5, 5} fall in the clear con-
ical region which represents a classification of 0
whereas the other two points fall in the dotted re-
gion representing class 1.

Therefore, we have demonstrated that the multi-
nomial non-linear hierarchical Bayes classifier can
learn the non-linear function of Figure 1.



(a) Naive Bayes

(b) Multinomial Non-Linear Hierarchical Bayes

(c) Gaussian Non-Linear Hierarchical Bayes

Figure 2: Decision boundaries learnt by classi-
fiers trained on the XOR function of Figure 1. The
dotted area represents what has been learnt as the
category 1. The clear area represents category 0.

3.4.3 Gaussian Non-Linear Hierarchical
Bayes

The decision boundary learnt by a Gaussian non-
linear hierarchical Bayes classifier is shown in
Figure 2c.

The boundary consists of two quadratic curves
separating the data points into the required cate-
gories.

Therefore, the Gaussian non-linear hierarchical
Bayes classifier can also learn the function de-
picted in Figure 1.

Thus, we have demonstrated that 3-layer hierar-
chical Bayesian classifiers (multinomial and Gaus-
sian) with a “sum-of-products” posterior and 4
hidden nodes (2 per class) can learn certain non-
linear functions.

3.5 Intuition on Learning Arbitrary
Non-Linear Functions

Non-linear hierarchical Bayesian models based on
the multinomial distribution are restricted to hy-
perplanes that pass through the origin. Each hid-
den node represents a linear boundary passing
through the origin. Models based on the Gaus-
sian distribution are not so restricted. Each hidden
node in their case is associated with a quadratic
boundary.

Assuming that the hidden nodes act as cluster
centroids and fill the available hyperspace of a
given class (for a suitable probability distribution),
one might expect the dominance of the closest hid-
den nodes - dominance of one hidden node for text
datasets is likely on account of extreme posterior
probabilities (Eyheramendy et al, 2003) - to re-
sult in the piece-wise reconstruction of arbitrary
boundaries in the case of Gaussian models. The
dominance of the nearest hidden nodes (in terms
of angular distances) is likely to result in appro-
priate radial boundaries in the case of multinomial
models.

We now demonstrate empirically that a classi-
fier capable of learning non-linear boundaries can
outperform linear classifiers on certain text and tu-
ple classification tasks.

4 Experimental Results

We conducted four sets of experiments to eval-
uate the performance of non-linear hierarchical
Bayesian classifiers trained using repeated soft ex-
pectation maximization. In the first three exper-
iments, the multinomial version was used and in



the last, the Gaussian version was used.
With both the naive Bayes classifier and the hi-

erarchical Bayesian models, the smoothing used
was Laplace smoothing. The SVM classifier used
a linear kernel.

4.1 Large Movie Review Dataset

The first experiment was run on the large movie
review dataset (Maas et al, 2011) which consists of
50, 000 movie reviews labelled as either positive
or negative (according to whether they expressed
positive or negative sentiment about a movie).

The training set size was varied between 5, 000
and 35, 000 in steps of 5, 000 (with half the re-
views drawn from positively labelled data and the
other half drawn from negatively labelled data).
Of the remaining data, we used 5, 000 reviews
(2, 500 positive and 2, 500 negative) as a valida-
tion set. The rest were used as test data.

The accuracies for different training set sizes
and hidden nodes are as shown in Figure 3. The
accuracies obtained when training on 25, 000 re-
views and testing on 20, 000 (with the remaining
5000 documents of the test set used for validation)
are shown in Table 1 .

Classifier Accuracy
Naive Bayes 0.7964± 0.0136
MaxEnt 0.8355± 0.0149
SVM 0.7830± 0.0128
Non-linear Hierarchical Bayes 0.8438 ±0.0110

Table 1: Accuracy on the movie reviews dataset
when trained on 25,000 reviews.

4.2 Single-Label Text Categorization
Datasets

We tested the performance of the various classi-
fiers (the hierarchical Bayes classifier was con-
figured with 2 hidden nodes per class) on the
Reuters R8, R52 and 20 Newsgroups datasets
preprocessed and split as described in (Cardoso-
Cachopo, 2007). 10% of the training data was held
back for validation. The results are shown in Ta-
ble 2.

4.3 Query Classification Dataset

For this experiment, we used a smaller corpus of
1889 queries classified into 14 categories (Thomas
Morton, 2005). Five different random orderings of
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Figure 3: Evaluations on the movie reviews
dataset. Plot A shows the performance of vari-
ous classifiers on the dataset (the multinomial non-
linear hierarchical Bayes classifier being config-
ured with 2 hidden nodes per class and trained us-
ing 50 repetitions of 4 iterations of soft expecta-
tion maximization). Plot B compares the accura-
cies of multinomial non-linear hierarchical Bayes
classifiers with different numbers of hidden nodes.
Plot C charts the performance of the classifiers on
much smaller quantities of data than in plot A (the
2-hidden-node multinomial non-linear hierarchi-
cal Bayes classifier being trained with 10 repeti-
tions of 5 expectation maximization iterations).



Classifier R8 R52 20Ng
Naive Bayes 0.955 0.916 0.797
MaxEnt 0.953 0.866 0.793
SVM 0.946 0.864 0.711
Non-Lin Hier Bayes 0.964 0.921 0.808

Table 2: Accuracy on Reuters R8, R52 and 20
Newsgroups.

Figure 4: Artificial 2-dimensional dataset: a) ring
b) dots c) XOR d) S

the data in the corpus were used, each with 1400
training, 200 validation and 289 test queries.

The accuracies of different classifiers (including
a hierarchical Bayes classifier with 4 hidden nodes
per class trained through 50 repetitions of 10 iter-
ations of expectation maximization) on the query
dataset are as shown in Table 3. The error margins
are large enough to render all comparisons on this
dataset devoid of significance.

Classifier Accuracy
Naive Bayes 0.721± 0.018
MaxEnt 0.667± 0.028
SVM 0.735± 0.032
Non-Linear Hier Bayes 0.711± 0.032

Table 3: Accuracy on query classification.

4.4 Artificial 2-Dimensional Dataset
A total of 2250 points were generated at random
positions (x, y) inside a square of width 500.

Those falling inside each of the four shaded
shapes shown in Figure 4 were labelled 1 and the
rest of the points (falling outside the shaded areas
of the square) were labelled 0.

For each shape, 1000 of the points were used for
training, 250 as the validation set and the remain-
ing 1000 as the test set. Naive Bayes and non-
linear hierarchical Bayes classifiers that assumed
the Gaussian distribution were used.

The Gaussian naive Bayes (GNB) classifier and
the non-linear Gaussian hierarchical Bayes (GHB)
classifier (10 hidden nodes per class), trained with
10 repetitions of 100 iterations of expectation
maximization were tested on the artificial dataset.
Their accuracies are as shown in Table 4.

Shape GNB GHB
ring 0.664 0.949
dots 0.527 0.926
XOR 0.560 0.985
S 0.770 0.973

Table 4: Accuracy on the artificial dataset.

4.5 Discussion
We see from Table 1 that the multinomial non-
linear hierarchical Bayes classifier significantly
outperforms the naive Bayes and SVM classifiers
on the movie reviews dataset. We see from Ta-
ble 2 that its performance compares favourably
with that of other classifiers on the Reuters R8, the
Reuters R52 and the 20 Newsgroups datasets.

We also observe from Plot B of Figure 3 that
multinomial non-linear hierarchical Bayes classi-
fiers with 2, 3, 4 and 5 hidden nodes outperform 1
hidden node on that dataset.

Finally, we observe that the artificial dataset is
modeled far better by a Gaussian non-linear hier-
archical Bayes classifier than by a Gaussian naive
Bayes classifier.

5 Conclusions

We have shown that generative classifiers with a
hidden layer are capable of learning non-linear
decision boundaries under the right conditions
(independence assumptions), and therefore might
be said to be capable of deep learning. We
have also shown experimentally that multinomial
non-linear hierarchical Bayes classifiers can out-
perform some linear classification algorithms on
some text classification tasks.
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